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Wave motion in a viscous fluid of variable depth 
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The linearized equations for wave motion of frequency w in a shallow, viscous liquid 
of variable depth h are reduced to a partial differential equation, 92 = 0, for the 
complex amplitude Z of the free-surface displacement on the assumptions of no slip 
at the bottom and Kh, KS, 4 1 ,  where K = w 2 / g ,  and 6, = (v/2w)t is a viscous 
lengthscale. It is shown that capillarity must be included in order to  avoid an 
irregular singular point (which would imply the total absorption of an incoming 
wave) a t  h = 0 . 9 2  then is fourth-order and has a regular singular point of exponents 
2 , 1 , 0 , 0  for h - (TX 4 0. The requirements that the free-surface displacement and the 
shear force be bounded as h $ O  rule out the solutions of exponent 0 and imply a 
stationary contact line. This last prediction is supported by laboratory observation 
but is not consistent with the observed runup of long, non-brea,king waves on real 
beaches (for which the condition of no slip presumably must be relaxed). The 
dissipation for sufficiently small capillarity and viscosity is equal to that calculated 
from a boundary-layer approximation (despite the violation of the assumpt’ion 
h & 6, on which that approximation is based). The viscous modification of the Stokes 
edge wave on a uniform, gentle slope is calculated through matched asymptotic 
approximations to the solution of 3’2 = 0. 

1. Introduction 
I consider here linear wave motion of time dependence exp ( - i d )  in a liquid 

of depth h(x, y), density p,  kinematic viscosity v and surface tension T on the 
assumptions that 

Kh 4 1 ,  KS, 4 1 ,  ( l . l a ,  b )  

where I/K = g/w2, 6 = (v/w)ieain ( l+i)6*,  h = ( T / p g ) i  (1.2a-c) 

are the relevant lengthscales. The frequency w has an O(6) imaginary part that  is 
significant (in the present approximation) only in the exponent - iwt, and the symbol 
w is to be regarded as real in the subsequent development except as noted. The 
domain of primary interest is h x crx = O(S), and K6, 4 1 must be replaced by 
K6, 4 cr2 in that domain if (T < 1 .  

I begin, in $2,  by constructing a formal operational equation for the complex 
amplitude of the free-surface displacement on the assumption of no slip a t  the 
bottom and KS, < 1 ,  but without the restriction Kh 4 1. This result may be of some 
interest as a generalization of the corresponding result for inviscid flow (Miles 1985). 
In  $3, I invoke Kh 4 1 to obtain a generalization, 9 2  = 0, of the conventional 
shallow-water equation (Lamb 1932, $193). If h % 8, this generalization reduces to 
the replacement of h by h-6 and is equivalent to a boundary-layer approximation 
in which the complex parameter 6 comprehends both dissipation and viscous 
dispersion. But if h - (TX 4 0 at a straight shoreline and capillarity is neglected, 
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h = 0 is an irregular singular point of 92, and Z has an essential singularity, in 
consequence of which an incoming wave would be totally absorbed at that boundary. 
Capillarity raises the order of 9 2  from two to four, renders the singular point a t  
h = 0 regular, and (under the restrictions that Z and the shear force be bounded) 
implies a fixed contact line. In  $ 5 ,  I calculate the viscous dissipation for 0 < Kh $ 1 
and show that it is equal to that calculated from a boundary-layer approximation 
despite the violation of h $- 8, near h = 0 .  Finally, I apply the present results to the 
Stokes edge wave in $ 6 .  

The formulation in $52 and 3 is for a clean surface. In  $4, I give the corresponding 
results for an inextensible (fully contaminated) surface, for which the condition of 
zero tangential stress is replaced by the condition of zero tangential velocity. 

The present model appears to be adequate for laboratory wave scales in the range 
(periods 5 1 s) of those of Mahony & Pritchard (1980), but it does not provide an 
adequate description of the shoreline motion on real beaches. In  particular, the 
prediction of a fixed contact line is supported by Mahony & Pritchard's observations 
but is not consistent with the observed runup of long waves on real beaches, for 
which both slip and nonlinearity presumably must be accommodated. 

2. The boundary-value problem 
The continuity and linearized Navicr-Stokes equations are (Lamb 1932, $ 328) 

v . q = 0 ,  q t = - V  -+gz +vv2q ( - h < z < C ) ,  (2.1 a, b)  

where q = (u,  w) is the velocity, u and w are the horizontal and vertical components 
thereof, p is the pressure, gz is the gravitational poter$ial, and 6 is the free-surface 
displacement. The linearized free-surface conditions are 

w = ct, -p+2pvwz  = Tvy, pv(u,+Vw) = 0 ( 2  = C),  (2.2a%) 

corresponding, respectively, to  continuity of particle displacement, normal stress, 
and tangential stress. The bottom (no-slip) conditions are 

t )  

u = w = 0  ( 2 = - h ) .  (2.3) 

Introducing the complex scalar and vector potentials @ and A according to 

( q , : + g z , C )  = Re{(V@+Vx A , i ~ @ , 2 ) e - ' " ~ ) ,  (2 .4)  

where Re implies the real part of, and invoking (2 . lu ,  b )  and v = - i d 2 ,  we obt)ain 

Vz@ = 0, a2V2A = A .  (2 .5a ,  6 )  

Eliminating the pressure from (2 .2b)  with the aid of (2 .4) ,  projecting onto z = 0, and 
invoking T = pghz and v = -iiwtY2, we obtain 

W=-ioZ, @+2S2W,= (g/iw)(1--Ah2V2)Z, Sz(U,+VW) = O  ( z = O )  

and u= w = 0  ( 2 = - h ) ,  (2.7) 

(2.6 a-c) 

where U and W are the complex amplitudes of u and w. 
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Guided by the formulation of the corresponding inviscid problem (Miles 1985), we 

@ = cosh Rz@,(x) + 4-l sinh Az@,(x) ( 2 . 8 ~ )  

and? A = z1 x [ c o s h ~ z ~ ~ ( x ) + ~ - ~ s i n h ~ z ~ , ( x ) ]  (z,.Y0,, = 0), (2.86) 

where X E! (X,y), k2 E -(a:+ai), K2 E k 2 + d 2 ,  (2.9 a s )  

the operators cosh Ax, . . . are defined by their power-series expansions in R2, and z1 is 
the unit vector in the x-direction. The corresponding results for the complex 
amplitudes of u and w are 

U = cosh AxV@, + A-l sinh RzW@, - K sinh KZ Yo - cosh KZ Yl (2.10a) 

W = R sinh Az@,+ coshRz@, + cosh KXV-  Yo + K - ~  sinhKxV. !Pl. (2.10b) 

pose the solutions of (2.5a, b )  in the forms 

and 

Substituting (2.8a) and (2.10) into (2.6) and (2.7) and letting R6+0, we obtain 

@j0 = (g/iw) ( 1  +h2A2) 2, @, = - iwZ, !Po = 262V@,, (2.1 1 a+) 

(2.11d) Yl = sech Kh[cosh AhV@, - (AV1 sinh Ah - 26 sinh Kh) V@J, 

and v - (HVZ)  +KZ = 22 = 0, (2.12) 

where 

1. [sin: Ah tanh Kh cosh Rh 1 - cosh Ah tanh Kh sinh Ah 
] ( l + P P ) + K [  R2 + K& 

H =  ____- 
K 

(2.13) 

V operates on both h and 2, A operates only on 2, and K z 1/6. We emphasize that 
the limit AS + 0 is asymptotic and that error factors of 1 + 0 ( R 2 P )  are implicit. 

3. Shallow-water approximation 
The approximation provided by (2.12) and (2.13) is valid for arbitrary Kh, but in 

most applications viscosity is significant only if Kh Q 1, in which domain (2.13) may 
be reduced to 

H 2: [ h  - 6 tanh (h/6)] [ 1 - h2V2 + O(Kh)] + O(Kh2). (3.1) 

If both viscosity and capillarity are neglected (6 = A = 0), (3.1) reduces to H = h, 
and (2.12) reduces to the conventional shallow-water equation (Lamb 1932, 193). If 
Z = Z ( x )  and h - ux 3.0, 22 = 0 then is a second-order, ordinary differential 
equation with a regular singularity of exponents 0,O a t  x = 0, and the inviscid 
boundary condition hZ’ = 0 may be satisfied by a regular (at x = 0) solution ; see e.g. 
$186, 2’ in Lamb (1932). Similar results hold locally, or through separation of 
variables, for a non-straight shoreline ; see e.g. 193 in Lamb (1932). If A = 0 and 
6, Q h, (3.1) reduces to  H = h-6, and (2.12) reduces to the conventional shallow- 
water equation (Lamb 1932, § 193) with a boundary-layer correction (h-t h-6). This 
interpretation also holds if 0 < h 4 h, but the boundary-layer approximation 
manifestly fails in the limit h 3. 0. 

If h3.O with &,,A > 0, (3.1) reduces to 

H - ~ ~ h 3 ( 1 4 2 ~ 7  ( ~ / s + o ) .  (3.2) 

Suppose, for simplicity, that Z = Z ( x )  and h x CTX $0  (the following argument is 
t A z1 component of A is admissible but redundant. 
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qualitatively valid for, and may be quantitatively extended to, longshore variations 
t)hat are slow compared with the variation normal to the shoreline). 2 2  = 0 then is 
a fourth-order, ordinary differential equation with a regular singularity (at x = 0) of 
exponents 2,1,0,0,  and the method of Frobenius (Ince 1944, $6 16.1-16.3) yields four 
linearly independent solutions with the limiting forms 

2, = g2+(&)g3+.‘., 2, = [+g2[logg+(F)]+..., z,, = l-g(logg+2)+ ..., 

and z,, = l o g g + 3 - ~ ~ ( l o g 2 ~ + 4 l o g ~ + ~ ) +  ..., (3.3d) 

(3.3a-c) 

where (3.4) 

The requirements that  the free-surface displacement and integral of the shear stress 
remain finite as 6 J. 0 imply 

IZI < 03, lZ-tZl< 03 (&-.10), (3.5a, b )  

which rule out the solutions Z,, and Z,,, respectively ; accordingly, the admissible 
solution of (2.12) and (3. 1) for h J. 0 has the form 

Z(X) = AZ,  +BZ,, (3.6) 

where 2, and 2, are the solutions of exponents 1 and 2, which vanish a t  5 = 0. 
The prediction of a fixed contact line (2 = 0 a t  h = 0) is consistent with the 

laboratory observations of wave reflection from a sloping beach by Mahony & 
Pritchard (1980), who report that there was ‘very little movement of the shoreline ’. 
This suggests that the present model may be adequate for laboratory configurations 
of sufficiently small scale, but we emphasize that the physical conditions at  the 
contact line may be much more complicated than those implied by the present 
hypotheses of no slip and uniform surface tension and that, for whatever reasons, 
shoreline motion (runup) of long gravity waves is seldom negligible on real beaches.? 

The limit h/6$0 with h = 0, which might have been expected to yield a useful 
approximation (cf. the limit h 4 0 with 6, = h = 0) ,  is considered in the Appendix and 
is found to imply an essential singularity a t  h = 0, which, in turn, implies total 
absorption of an incoming wave. It follows from these predictions that capillarity 
must be included in a physically acceptable description of the limit h $ 0 in a viscous 
fluid. 

4. Inextensible surface 
We now suppose that the surface is inextensible (presumably in consequence of 

contamination). The condition of zero tangential stress, ( 2 . 2 ~ )  or (2.6e), then is 
replaced by the condition of zero tangential velocity, which leads to the replacement 
of (2.11) and (2.13) by 

Qr, = (g/iw)(1+h2d2)Z, Qr, = -iwZ-V-Y,, (4.1 a, b )  

(4.lc, d )  
Yo = (Ksinhd-’  [(coshKh-coshdh)V@,-iwk-’sinhAhVZ], Y, = VQr,, 

and H x [h--26tanh(h/26)] [ l  -h2V2+O(Kh)]+O(Kh2) ,  (4.2) 

t The joint hypotheses of no slip and a moving contact line imply an infinite shear force. which 
may be rendered finite either by fixing the contact line, as in the present model, or by relaxing the 
condition of no slip. See Dussan V. & Davis (1974) and Dussan V. (1979). 
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wherein error factors of 1 + O(PS2)  are implicit. Comparing (2.13) and (4.2), we find 
that the change in the tangential boundary condition from zero stress to zero velocity 
implies the replacement of 6 by 26. This might have been anticipated in the 
boundary-layer approximation, but is perhaps less obvious for h = O(6).  

The qualitative discussion of $3  remains valid for an inextensible surface. 

5. Dissipation integral 
The mean rate a t  which wave energy decays in consequence of viscous dissipation 

is given by (Lamb 1932, $329 (12), wherein i t  can be shown that the net contribution 
of the surface integrals is negligible compared with that of the volume integral if 
KS, 4 1 )  

= P v j - J J b  x 4 ) 2 )  dlJ> (5.1) 

where ( ) signifies a temporal average over 2 ~ / w .  Substituting q from (2.4), 
averaging, and invoking v = 0 ) 6 ) ~  and (2 .5b ) ,  we obtain 

Substituting the shallow-water approximation 

A = S sech (h /S)  sinh ( z / S )  z1 x V@,,, (5 .3)  

which follows from (2.8b), (2.1lc, d ) ,  Kh 4 1,  and K x 1/6, into (5.2) and integrating 
over - h < z < 0, we obtain 

IVcPo)2tanh(h/S)dX (5.4) 

If the lengthscale of cPo is l / k  and h x ax for ax = O(S), tanh(h/S) may be 

(5.5) 

approximated by 1 in (5.4) to obtain 

D = ipd, [/(VCB,(~ dS[l+ O ( k S / a ) ] ,  

which is equivalent to D calculated from the boundary-layer approximation. This 
result is unexpected (in view of the violation of the boundary-layer assumption 
h p S*),  and we emphasize that it depends implicitly on capillary effects in the 
neighbourhood of h = 0, the absence of which would imply total absorption (see 
Appendix). 

Repeating the reduction of (5.2) with (2.1lc, d )  replaced by (4 . lc ,  d ) ,  we obtain 
(5.4) and (5 .5)  with S replaced by 26, as might have been conjectured from (4.2). 

6. Stokes edge wave 
The dominant edge wave for an inviscid liquid on a uniform, gentle slope, h = gx, 
4 1, is given by Lamb (1932, $260) 

[ =  ae-kxcos(ky-wt), w2 = ggk (a 4 1). (6.1 a ,  b )  

We seek the corresponding solution of (2.12) and (3.1) in the form 

(6.2a, b )  
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on the assumptions that la( 4 1, p = O(a) and y = 0(1 ) ,  where 

(6.3a-c) 

We anticipate that p, which appears as an eigenvalue, is complex. 
Substituting (6.2) into (2.12) and invoking (3.1), K = w 2 / g  and (6.3), we obtain 

(pLZYF)’ - 2 u p Y y  F’ - ap’YyF + a( 1 +p) F = 0, (6.4) 

where p = c-tanht,  YyF = F + 2 a y 2 F - y 2 F .  (6.5a, b)  

The requirements that 2 (see $3) and $oh Udz vanish a t  h = 0 imply 

F = 0, p Y Y ( F ’ - d ‘ )  = 0 (5 = 0). (6.6u, b)  

The requirement that  2 ( 6 . 2 ~ )  decay as k x f  co implies 

F = l+o(aed)  (aE+ co). (6.7) 

Integrating (6.4) as a first-order differential equation for p Y 7 F ,  with the third and 
fourth terms therein being regarded as O(u)  forcing terms, and invoking (6.6b), we 
obtain 

p Y y F ’  = -aF(&)e2a6, F = “(1 +/ l )F(q ) -p ’ (q )YyF(q) ]e -2uqdq .  

(6.8a, b)  Integrating (6.8) and invoking (6.7), we obtain 

where 
qua second-order differential equation, and invoking (6.6a), we obtain 

is a constant of integration (see below). Invoking (6.5b), integrating (6.9), 

where F 0 -  - 1 -e-O-a)S = (aZ+y-z)t. (6.11 a, b )  

The integral equation (6.10) may be solved by iteration, starting from the first 
approximation F = Fo and adjusting p a t  each stage of the iteration to satisfy (6.7). 
Substituting ( 6 . 1 1 ~ )  into (6.8b) and invoking (6.7), we obtain the first approxi- 
mations 

I 1 
,8 = 201 - - 1 + - + + [ ~ ( 1 + ~ a ) - ~ ( ~ + ~ u ) ]  [ l+O(a) ]  ( 6 . 1 2 ~ )  k’3( p+a 

= 2a[ - 1 + y + 0(01)], (6.12 b )  

where @ is the logarithmic derivative of the gamma function, and 

(6.13 a) 

= e-2ac(tanh[-y)+ ye-g/y+O(a). (6.13b) 

Substituting (6.12b) into (6.3b) and invoking (6.3a, c ) ,  we obtain the complex 
frequency 

w = (crgk); [ 1 + kh - a-lk8 + O(a2)] .  (6.14) 

The damping ratio, k8,/cr, as already shown in $5, is equal to that obtained through 
a boundary-layer calculation (cf. Guza & Davis 1974). 
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We proceed on the hypothesis that  Y,,F - F as €Jy --f 00. It then follows from (6.9) 
that 

(6.15) 

Substituting ( 6 . 5 ~ )  and (6.13b) into (6.15) and anticipating IfJyI >> 1 (see below), we 

from which Y 7 F  - F may be confirmed. 
Returning to  (6.4) and letting Y y F  - F and p - 6-1 therein, we obtain 

(6 - 1)  F” + [ 1 - z a g  - 1 )] F’ + apF = 0. (6.17) 

The solution of this confluent hypergeometric equation (Abramowitz & Stegun 1964, 
$ 13.1.6), subject to (6.7), yields t)he outer approximation 

( 6 . 1 8 ~ )  

= 1 +kP{log w45- 1 ) l + ~ ( l - ~ P ) - ~ ( 1 ) > + o [ ~ P z ( ( E -  111, (6.18 b)  

where C = 1.781 ... is Euler’s constant. Matching (6.18b) to (6.17), we confirm (6.12b) 

F = r( 1 - +/I) U[ - +/I, 1,201(5 - 1 )] 

and obtain 
1 n“1-y) + 1 +O(a). “=a+ 12c 

(6.19) 

Finally, we let a(6- 1)  + 00 in ( 6 . 1 8 ~ )  and invoke ( 6 . 2 ~ )  to obtain 

2 - aT(l--$) [2u-1k(h-6)]kA-ae-lcs+ilcy ( W V  t a), (6.20) 

which describes the modification of the edge wave decay by small capillarity and 
viscosity. This last result is qualified by the shallow-water approximation ; however, 
just as (6.1) can be shown to provide a valid inviscid approximation in kh -4 1,  within 
an error factor of 1 + O(a/kh,) ,  for a smooth profile of asymptotic depth h, (Miles 
1989), so also can (6.20).t An asymptotic approximation for lch = O(1) that matches 
(6.21) in kh 4 1 could be constructed along the lines of $ 4  in this last reference, but 
2 is exponentially small in kh = O ( l ) ,  and (6.20) should suffice for most cases of 
oceanographic interest. 

This paper is dedicated to GKB as a token of affection and esteem. 
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Appendix. The limit h/6 4 0, capillarity absent 
The limit h / 6 $ 0  with h = 0 reduces (3.1) to 

H - LS-Zh3 3 (h  - 0 ~ 4 0 ,  h = 0). (A 1)  

t If h ( r )  is not smooth, as in a typical wave tank, in which h decreases discontinuously from u 
to 0 at the toe of the beach, the dominant edge wave must be accompanied by higher modes in order 
to render both 2 and 2’ continuous at the toe. 
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Then, if Z = Z(x) ,  x = 0 is an irregular singular point of 9 2  = 0, and there exists a 
pair of linearly independent solutions, Z,, that  describe waves moving in the +x- 
directions and exhibit the limiting behaviours 

wherein the alternative signs are vertically ordered. The outgoing wave 2, is 
exponentially infinite, and therefore physically inadmissible, while the incoming 
wave 2- is totally absorbed and vanishes a t  x = 0. It follows that the approximation 
h = 0 with 6, > 0 is not uniformly valid as h 4 0, and capillarity must be included to 
obtain physically meaningful results. 

(The essential role of capillarity for h < 6 ,  is to raise the order of 92. This is 
associated with the fact that  capillarity dominates gravity in governing wave 
propagation for sufficiently small wavenumbers. The elimination of a physically 
unacceptable singularity through an increase of order of the differential equation is 
reminiscent of, but more complicated than, the elimination of the critical-layer 
singularity in the Orr-Sommerfeld equation through the introduction of viscosity.) 
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